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ABSTRACT

This study assesses the predictive skill of eight North American Multimodel Ensemble (NMME) models in
predicting the Indian Ocean dipole (IOD). We find that the forecasted ensemble-mean IOD-EI Nifio—
Southern Oscillation (ENSO) relationship deteriorates away from the observed relationship with increasing
lead time, which might be one reason that limits the IOD predictive skill in coupled models. We are able to
improve the IOD predictive skill using a recently developed stochastic dynamical model (SDM) forced by
forecasted ENSO conditions. The results are consistent with the previous result that operational IOD pre-
dictability beyond persistence at lead times beyond one season is mostly controlled by ENSO predictability
and the signal-to-noise ratio of the Indo-Pacific climate system. The multimodel ensemble (MME) investi-
gated here is found to be of superior skill compared to each individual model at most lead times. Importantly,
the skill of the SDM IOD predictions forced with forecasted ENSO conditions were either similar or better
than those of the MME 1OD forecasts. Moreover, the SDM forced with observed ENSO conditions exhibits
significantly higher IOD prediction skill than the MME at longer lead times, suggesting the large potential
skill increase that could be achieved by improving operational ENSO forecasts. We find that both cold and
warm biases of the predicted Nifio-3.4 index may cause false alarms of negative and positive IOD events,
respectively, in NMME models. Many false alarms for IOD forecasts at lead times longer than one season
in the original forecasts disappear or are significantly reduced in the SDM forced by forecasted ENSO
conditions.

1. Introduction

The Indian Ocean dipole (IOD) phenomenon is a
prominent climate pattern in the tropical Indian
Ocean, characterized by year-to-year fluctuations
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of a dipole structure in sea surface temperature (SST)
anomalies between the southeastern equatorial Indian
Ocean (SEIO) and the western equatorial Indian Ocean
(WIO) (Saji et al. 1999; Webster et al. 1999). Like
El Nifio-Southern Oscillation (ENSO) in the Pacific, the
changes in the zonal SST gradient and coherent thermocline
anomalies across the Indian Ocean is coupled with the
atmospheric circulation (Yamagata et al. 2004; Schott
et al.2009; McPhaden and Nagura 2014). Importantly,
the IOD affects weather and climate in many areas of
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the world, especially in Indian Ocean rim areas such as
Australia, India, East Africa, and East Asia (Ashok
et al. 2001, 2003; Guan and Yamagata 2003; Saji and
Yamagata 2003; Yamagata et al. 2004; Yuan et al.
2008; Cai et al. 2011; Qiu et al. 2014; Lu et al. 2018a).
Therefore, skillful IOD predictions allow for the im-
plementation of mitigation measures to climate variability
and thereby can provide societal benefits in various areas
such as agriculture, fisheries, marine ecosystems, human
health, as well as potential increased resilience to nat-
ural disasters (e.g., Abram et al. 2003; Cai et al. 2009;
Hashizume et al. 2012; Takaya et al. 2014; Yuan and
Yamagata 2015).

The predictability of Indian Ocean SST anomalies
associated with the IOD has previously been assessed
using a range of coupled climate models and statisti-
cal models (e.g., Wajsowicz 2005, 2007; Luo et al.
2005, 2007; Song et al. 2008; Zhao and Hendon 2009;
Dommenget and Jansen 2009; Shi et al. 2012). For
instance, Shi et al. (2012) assessed the predictive skill
of the SST anomalies associated with the IOD for the
period of 1982-2006 by using ensemble seasonal
forecasts from six coupled models developed by the
Australian Bureau of Meteorology, National Centers
for Environmental Prediction (NCEP), European
Centre for Medium-Range Weather Forecasts (ECMWF),
and Frontier Research Centre for Global Change. They
found that the maximum lead time for skillful prediction
of SSTs in the WIO is about 5-6 months compared to
only 3-4 months in the SEIO (when all start calendar
months are considered). Other studies found that skillful
prediction of IOD (i.e., the anomalous zonal SST gra-
dient) events is limited to a lead time of approximately
one season (Shi et al. 2012; Liu et al. 2017), with slightly
higher skill seen only for some individual strong IOD
events, perhaps up to about two seasons (Luo et al. 2008;
Shi et al. 2012). The prediction failure of IOD events at
longer lead times was mostly attributed to a strong bo-
real winter “predictability barrier” (Wajsowicz 2005,
2007; Feng et al. 2014) (i.e., forecast skill drops rapidly
for the target boreal winter season regardless of the
forecast start time).

Some studies (Song et al. 2008; Zhao and Hendon
2009; Yang et al. 2015) showed that IOD events that co-
occur with ENSO events are more predictable, while the
remaining events appear to be initiated by weather noise
and exhibit a lower predictability. These results indicate
that a poorly simulated IOD-ENSO relationship might
be one reason that limits the predictive skill of the IOD
in operational forecasts (Shi et al. 2012). In fact, there
is a considerable debate regarding the IOD-ENSO re-
lationship within the scientific community. On one hand,
some modeling studies (Iizuka et al. 2000; Behera et al.
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2006) argued that the IOD is in fact an intrinsic climate
mode that is largely independent from ENSO. For in-
stance, Behera et al. (2006) found that only about 42%
of IOD events were affected by the ENSO. On the other
hand, other studies hypothesized that the IOD mode
is not independent of the tropical Pacific and ENSO
(Annamalai et al. 2003; Loschnigg et al. 2003; Zhang
et al. 2015; Yang et al. 2015; Kajtar et al. 2017; Stuecker
et al. 2017). By using a partially coupled model experi-
ment with decoupled SST over the tropical Pacific,
Crétat et al. (2018) and Wang et al. (2019) showed that
the IOD still exists without ENSO, but with weaker
amplitude and reduced Bjerknes feedback in the Indian
Ocean. Furthermore, several studies demonstrated evi-
dence that only about one-third of IOD events occur
independently of ENSO events (Loschnigg et al. 2003;
Stuecker et al. 2017). Recently, Stuecker et al. (2017)
developed a new null hypothesis framework for the IOD
and showed that most of the observed IOD variability
can be explained by deterministic interactions between
the annual cycle and ENSO [ENSO combination mode
(C-mode)] (Stuecker et al. 2013, 2015). Zhao et al.
(2019) further demonstrated improved IOD predictions
using seasonally modulated ENSO forcing and provided
evidence that IOD predictability beyond persistence is
largely controlled by ENSO predictability and signal-to-
noise ratio.

In operational seasonal forecasting, the use of mul-
timodel ensemble prediction generally results in im-
proved skill due to error compensation and greater
consistency and reliability between models (Hagedorn
et al. 2005; DelSole et al. 2014). The North American
Multimodel Ensemble (NMME) system (Kirtman et al.
2014) was recently developed to harness this idea. The
NMME system is used for seasonal predictions since
2011 and was made an operational forecast system in
2016. Many studies have shown that the NMME system
has advanced the forecasting skill of ENSO and rele-
vant climate variables (Barnston et al. 2015,2019; Chen
et al. 2017).

Given this recent improvement of ENSO prediction in
the NMME system, one might wonder if a similar skill
improvement also exists for IOD prediction or if the
enhanced ENSO skill can be translated into a better
IOD prediction skill using the simple model framework
developed by Stuecker et al. (2017) and Zhao et al.
(2019). Furthermore, we ask the question whether we
are near the intrinsic predictability limit associated with
the chaotic nature of the coupled ocean—atmosphere
system. For instance, Newman and Sardeshmukh
(2017) argued that the Indian Ocean SST forecast
skill of the NMME system is close to the predict-
ability limit estimated using signal-to-noise ratios
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TABLE 1. Basic information for the eight NMME climate models.

Model Name used here Period Ensemble size Lead times (months)
CMC1-CanCM3 CMC1 Jan 1982-Jul 2019 10 0.5-11.5
CMC2-CanCM4 CMC2 Jan 1982-Jul 2019 10 0.5-11.5
COLA-RSMAS-CCSM4 CCSM4 Jan 1982-Jul 2019 10 0.5-11.5
NCEP-CFSv2 CFSv2 Jan 1982-Jul 2019 24 0.5-9.5
GFDL-CM2p1-aer04 GFDL Jan 1982-Dec 2017 10 0.5-11.5
GFDL-CM2p5-FLOR-A06 GFDL-A Jan 1982-Jul 2019 12 0.5-11.5
GFDL-CM2p5-FLOR-B01 GFDL-B Jan 1982-Jul 2019 12 0.5-11.5
NASA-GMAO-062012 NASA Jan 1982-Jan 2018 12 0.5-8.5

from a simplified NMME linear inverse model (LIM)
forecast. Furthermore, Liu et al. (2017) suggested
that the SST forecast at each pole of the IOD has
little room for improvement, while there is a large
potential to improve the gradient forecasts of the two
poles, at least by 0.2-0.3 correlation skill, based on
potential predictability estimates using multimodel
forecasts from the Ensemble-Based Predictions of
Climate Changes and Their Impacts (ENSEMBLES).
Such potential predictability estimates are of course
model dependent; therefore, it is interesting to com-
pare IOD potential predictability using the NMME
models with the newly developed stochastic dynami-
cal IOD model (Stuecker et al. 2017; Zhao et al. 2019).

The remainder of this paper is organized as follows.
Section 2 presents the data and methodology. Section 3
evaluates the forecast skill of the NMME systems.
Section 4 discusses the further improvements using the
SDM. Section 5 includes the discussion and summarizes
the main conclusions.

2. Data and methodology
a. Data

We utilize the hindcasts (1982-2010) and real-time
forecasts (2011-19) of eight models from the NMME
project, which are CMC1-CanCM3, CMC2-CanCM4,
COLA-RSMAS-CCSM4, NCEP-CFSv2, GFDL-CM2pl-
aer04, GFDL-CM2p5-FLOR-A06, GFDL-CM2p5-FLOR-
B01, and NASA-GMAO-062012. For simplicity, these
model names are shortened as CMC1, CMC2, CCSM4,
CFSv2, GFDL, GFDL-A, GFDL-B, and NASA, respec-
tively. Table 1 summarizes the time period, ensemble size,
and lead months for these eight models used here. The
number of ensemble size ranges from 10 to 24, and the
maximum lead time varies from 8.5 to 11.5 months.
The NMME forecasts were initialized on or near the
first day of each month. The lead time is defined as
the number of months between forecast start time and
the center of the month being predicted. For example,
for a forecast starting at the beginning of January, the
forecast for January has 0.5-month lead, for February a

1.5-month lead, and so on. Besides looking at the en-
semble mean forecast characteristics of each individ-
ual model, the grand multimodel ensemble (MME)
forecasts are studied with equal weight given to each
individual model. All gridded SST forecast data on a
global 1° grid analyzed here are publicly available in
the International Research Institute for Climate and
Society (IRI) Data Library (http:/iridl.Ideo.columbia.edu/
SOURCES/.Models/. NMME). The SST observations used
here are the NOAA Optimum Interpolation SST data,
version 2 (Reynolds et al. 2002; http://www.esrl.noaa.gov/
psd/data/gridded/data.noaa.oisst.v2.html).

Monthly anomalies are calculated with respect to the
climatology from January 1982 to December 2010 in
both the observations and most of the NMME models
except for CCSM4 and CFSv2. Several studies have
noted a discontinuity in the forecast bias of the CFSv2
SST hindcasts for the central and eastern tropical
Pacific occurring around 1999, which has been related
to a discontinuity in the data assimilation and initiali-
zation procedure (Xue et al. 2011; Kumar et al. 2012;
Barnston and Tippett 2013; Barnston et al. 2019). Both
CFSv2 and CCSM4 model share the same initial con-
ditions (Kirtman et al. 2014), which come from the
Climate Forecast System Reanalysis (Saha et al. 2010).
Therefore, following the method of Barnston et al.
(2019), we eliminate the discontinuous forecast biases
by calculating the forecast anomalies using two different
climatological periods of 1982-98 and 1999-2010, re-
spectively, for these two models. In calculating the
anomalies for the NMME models, the dependence on
both season and forecast lead time are considered fol-
lowing Kumar et al. (2017).

The IOD mode index (DMI) is defined as the area-
averaged SST anomalies in the WIO (10°S-10°N, 50°-
70°E) minus those in the SEIO (10°S-0°, 90°-110°E)
(Saji et al. 1999). The predictive skill of the IOD has
been studied by measuring the predictive skill of the
DMI in many previous studies (e.g., Luo et al. 2007;
Liu et al. 2017; Doi et al. 2017). The Nino-3.4 in-
dex (hereafter N3.4) is defined as the SST anomalies
averaged over the region 5°S-5°N and 120°-170°W.
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The N3.4 is used by many operational centers as a key
oceanic variable that describes the ENSO state.

b. A stochastic dynamical model in predicting the
DMI and hindcast experiments

We use a recently developed stochastic dynamical
model (SDM) for the DMI by Stuecker et al. (2017) and
Zhao et al. (2019). In this framework, the continuous
time evolution of the DMI is described by the following
equation:

ar _

7 —Ay[1+ Dcos(w t + ¢,)]

+ a1+ Acos(w,t + ¢, )IN3.4(1) + o (1), 1)

where 7 is the monthly DMI. The three terms on the
right-hand side of Eq. (1) represent seasonally modu-
lated damping that arises from the Indian Ocean
coupled ocean—atmosphere feedback, the seasonally
modulated ENSO forcing, and the stochastic forcing,
respectively. The parameters of growth rate (Ag, D,
and ¢p), coupling strength (ag, A, and ¢,), and sto-
chastic forcing strength (o) can be estimated via
multivariate linear regression using the observed DMI
and N3.4 indices following Zhao et al. (2019). The term
w, denotes the annual frequency of the annual cycle
[=7/(6 months)]. We used the training period of 1982—
98 for estimating all the parameters as in Zhao et al.
(2019). We find a very similar performance of the
SDM when we train the parameters using the period
after 1999 instead. This suggests the robustness of the
SDM parameters despite observed decadal changes
in IOD predictability (Han et al. 2014; Liu et al.
2017). We will also neglect the stochastic forcing
term—which can be a crucial factor in the initiation
of observed IOD events—as we compare our IOD
model skill to ensemble mean forecasts following Zhao
et al. (2019).

We conducted three types of experiments using the
SDM. In the first experiment (SDM-P-P), we inte-
grated the SDM initialized from the monthly observed
(thus “‘perfect’”’) DMI conditions by prescribing the
observed/perfect ENSO forcing. This experiment is a
measure of the upper IOD predictability limit pro-
vided by ENSO. In the second experiment (SDM-F-P),
the observed ENSO forcing was replaced by the
forecasted N3.4 index in each individual NMME
model. Finally, in the third experiment (SDM-F-F),
the ENSO forcing was the same as SDM-F-P but the
initial DMI conditions were replaced with the DMI
index at 0.5-month lead in each individual NMME
model. The SDM-F-F is the SDM version that can be
used in an operational forecast setting. Importantly,
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our approach is linear when we use fixed parameters
and neglect the stochastic forcing term. Therefore, we
would obtain the same result if instead our method
would be applied to all the members independently
and then the ensemble average of the resulting DMI
forecasts would be calculated.

c. Forecast verification metrics

To quantify the deterministic skill of the IOD
predictions in different models and approaches with
respect to the observations we use the anomaly cor-
relation coefficient (ACC) and the root-mean-square
error (RMSE) metrics. The ACC and RMSE metrics are
two common measures of forecast accuracy quantifying
errors in sign and amplitude. To assess seasonal per-
formance, the RMSE is standardized for each season
individually and referred to as normalized RMSE
(NRMSE), so that the climatology forecasts (zero
anomaly) result in the same RMSE-based skill (of
zero) for all seasons and that all season’s RMSE
contribute equally to a seasonally combined RMSE
(Barnston et al. 2012). For skill comparisons between the
predictions from models of the International Research
Institute for Climate and Society (IRI)/Climate Prediction
Center (CPC) IOD prediction plume and other seasonal
forecast products, which are for 3-month-averaged SST
data, 3-month running means are used prior to calculating
the deterministic verification metrics. The Fisher z trans-
formation was used to test statistical significance of the
ACC differences.

Large-amplitude IOD events exhibit the most pro-
nounced climate impacts and thus are most important to
predict. Following Stanski et al. (1989) and Shi et al.
(2012), we further assess the ability of the models to
predict three categories of IOD events: (i) positive IOD
events that have a DMI amplitude exceeding 0.5
standard deviation, (ii) negative IOD events that
have a DMI amplitude less than 0.5 standard devia-
tion, and (iii) neutral IOD events that fall in between.
The contingency table (Table 2) is made for the oc-
currence of observed and predicted IOD events using
the DMI in September-November (SON) for each in-
dividual model. We use the observed 0.5 standard de-
viation threshold to categorize the model forecasts
following Shi et al. (2012) for better comparison with
their results. The hit rate (HR) for correctly forecast-
ing the occurrence of a positive/negative IOD event is
defined as

HRpositive = m

l
R L =—X 00 .
negative g + h + l 100 / (2)

X 100% or
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TABLE 2. Contingency table of forecasting positive, neutral, and negative IOD events.
Observed positive IOD  Observed neutral Observed negative IOD Total
Forecasted positive IOD a d g M(a+d+g)
Forecasted neutral b e h N(b+e+h)
Forecasted negative IOD c f i O(c+f+i)
Total J(@+b+c) K(d+e+f) L(g+h+i) T@+b+c+d+tet+f+g+h+i

The false alarm rate (FAR), which is a measure of in-
correctly forecasting an event when in reality a neutral
event occurred, is defined as

+f
d+e+f

See Table 2 for the definitions of the letters a—i. Based
on the threshold, 11 (a + b + c¢) positive IOD events,
10 (g + A + i) negative IOD events, and 16 (d + e + f)
neutral IOD events occur in the SON season during
1982-2018.

FAR = X 100%. 3)

3. Prediction skill of IOD and biases of
IOD-ENSO relationships in NMME models

Figures 1a and 1b shows the all-months stratified ACC
and RMSE skill scores between forecasted and observed
DMI as function of lead time. For initialization skill at
0.5-month lead, the MME (black lines in Figs. 1a,b)
demonstrates the best ACC and RMSE skill scores. This
result indicates a relatively better initialization skill for
the zonal gradient of Indian Ocean SST when we use a
multimodel ensemble mean. The CFSv2, NASA, and
CCSM4 models (red, purple, and blue lines in Figs. 1a,b,
respectively) are among the best performers in terms of
initialization skill.

Each individual model and the MME are character-
ized by an ACC above persistence and an RMSE lower
than persistence. For short lead times of 1.5-4.5 months,
each individual model does not show statistically sig-
nificant ACC and RMSE differences with the other
models, while the MME is superior to each individual
model, characterized by a higher ACC (about 0.1) and
lower RMSE (about 0.05 K). For longer than 5.5-month
lead times, the ACC drops below 0.5 and the RMSE
increases to values as large as the climatological
standard deviation of the DMI for all models, sug-
gesting very limited predictive skill of the IOD for
current operational models at longer lead times. The
GFDL-A, GFDL-B (long dashed and solid orange
lines in Figs. 1a,b), and CCSM4 models are among the
top-ranked models for the ACC at leads longer than
5.5 months. The MME also shows competitive ACC skill
and better RMSE skill than the top-ranked models at

leads longer than 5.5 months. These results indicate the
superior performance of the MME for the IOD pre-
dictions compared to individual models, consistent with
Wu and Tang (2019).

Given the important role of the IOD-ENSO rela-
tionship in IOD predictions (Song et al. 2008; Zhao
and Hendon 2009; Luo et al. 2016; Stuecker et al.
2017; Zhao et al. 2019), we next evaluate the perfor-
mance of the NMME models in predicting ENSO and
the IOD-ENSO relationship. Figures 1c and 1d shows
the all-months stratified ACC and RMSE skill scores
between forecasted and observed N3.4 index as func-
tion of lead time. While the MME exhibits the highest
ACC and RMSE skill scores for the DMI among the
NMME models at nearly all lead times (Figs. 1a,b), the
MME shows the highest ACC skill for the N3.4 index
only at short lead times (0.5-3.5 months). At longer
lead times, CMC2 has the highest skill (at 4.5 and
5.5 months) and CFSv2 exhibits good skills at even
longer lead times (9.5 months; Figs. 1c,d). This out-
come is consistent with the findings of Kirtman et al.
(2014) and Barnston et al. (2019), which showed that
some individual models may be superior to the MME
at certain lead times, however the MME is always close
to being top ranked.

As an important proxy for the IOD-ENSO rela-
tionships, Figs. 2a and 2b shows the lead-lag cross
correlations between monthly N3.4 and DMI for the
observations and the forecasts at lead times of 4.5 and
7.5 months for the NMME models. The IOD-ENSO
relationship deteriorates away from the observed
correlation with increasing lead time in some models
(that consist of multiple ensemble members each; see
Table 1) such as CFSv2 and CMC2. Although the
predictive skill of ENSO has significantly improved
from CMCI1 to CMC2 (green dashed and solid lines in
Figs. 1c,d), an improvement of predictive skill for the
10D is not clearly evident (Figs. 1a,b). It is important
to note that the CMC2 model (solid green lines in
Figs. 1a,b) is an outlier as the DMI RMSE in this model
is as large as the DMI RMSE of the persistence forecast
and also larger than the DMI RMSE in the CMC1 model
(long dashed green lines in Figs. 1a,b). This may be re-
lated to a poor representation of the IOD-ENSO rela-
tionship in both the CMC1 and CMC2 models with a
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Overall metrics: DMI (3-month running mean)
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FIG. 1. (a) Anomaly correlation coefficient (ACC) and (b) root-mean-square error (RMSE; K) skill between the
all-months observed and forecasted DMI, as a function of lead time for the individual models. (c),(d) Asin (a) and
(b), but for the Nifo-3.4 index. Both forecasts and verification were smoothed with a 3-month running mean prior to

computing the metrics.

positive lead-lag correlation coefficient for ENSO leading
10D months, which is opposite to what is seen in the
observations and most other models (Figs. 2a,b). In
this sense, the relatively poor predictive skill for the
IOD in CFSv2 (Figs. 1a,b) might also be related to a
poor representation of the IOD-ENSO relationship
in CFSv2, with a much higher negative correlation for
ENSO leading IOD months in CFSv2 compared to
the observations (Figs. 2a,b). Overall, CCSM4 per-
forms best simulating the IOD-ENSO relationship in
terms of a cross-correlation relationship that looks
closest to the observations among the NMME models
(Figs. 2a,b).

Importantly, these biased lead-lag cross correlations
between monthly N3.4 and DMI for the forecasts at lead
times of 4.5 and 7.5 months can be corrected using the
SDM (Figs. 2c¢,d) since it utilizes the observed I0D-
ENSO relationship (Stuecker et al. 2017; Zhao et al.
2019). It should be noted that the SDM overestimates
the positive correlations of DMI leading ENSO by the
peak time around 2 months. This is because the sto-
chastic forcing as well as some intrinsic Indian Ocean
processes are not included in the current SDM. In the
following section, we provide evidence that utilizing the
observed IOD-ENSO relationship in the SDM can im-
prove the IOD predictive skill in the NMME models.
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DMI/N3.4 lead-lag correlations using NMME model forecasts
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FIG. 2. Lead/lag cross correlations between monthly Nifio-3.4 index and DMI for the observations (black bars)
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4. Improved performance of SDM in predicting
the IOD compared to NMME models

a. Deterministic all-months stratified skill of [OD
prediction

The SDM forecasts driven by forecasted ENSO
forcing from the CMC1, CMC2, and CFSv2 models
exhibit significantly better predictive skill of the IOD
in terms of both ACC and RMSE than the original IOD
forecasts from each individual model (Figs. 3 and 4). For
example, compared with the original CMC2 forecast,
the corresponding (forced with forecasted CMC2 ENSO

conditions) SDM-F-F exhibits an improved ACC value
of 0.15 and RMSE value of 0.15K averaged over lead
times from 4.5 to 9.5 months. Similarly, an improvement
using the SDM is also evident for the NASA model at
lead times longer than 5.5 months. The ACC scores of
our SDM-F-F forecasts using forecasted ENSO forcing
from the GFDL, GFDL-A, and GFDL-B models are
not statistically different from those in the correspond-
ing original models (Figs. 2e—g), partly due to relatively
low ENSO prediction skills of these models (sharp drop
of ACC and RMSE skill for N3.4 with increasing lead
times; Figs. 1c,d). In general, the RMSE scores are



386

WEATHER AND FORECASTING

CMC2
L) L)

VOLUME 35

CFSv2
L

ACC

1 L) L) L) L) L) L) L)

0.8

0.6

ACC

ME
IME
M—F—

P

oo

A1 8 8 0
345678910

0 | I N N N N
0123456738910

Lead [months]

FI1G. 3. (a) ACC skill between the all-months observed and forecasted DMI as a function of lead time for CMC1 (blue), MME (black),
SDM-P-P (red), SDM-F-P (green), and SDM-F-F (orange). The SDM-F-P and SDM-F-F in (a) are SDM experiments using CMC1
forecasted ENSO forcing with observed and CMCI1 forecasted DMI initial conditions, respectively. (b)-(h) As in (a), but for CMC2,
CCSM4, CFSv2, GFDL, GFDL-A, GFDL-B, and NASA, respectively. The triangles denote that the ACC differences between SDMs
(SDM-F-P in green and SDM-F-F in orange) and original model (blue) are statistically significant above the 90% significance level based

on a two-sided test of the Fisher z transformation.

improved in the SDM compared to the original models,
especially at longer lead times, approximately at the
same level or better than the MME (Fig. 4). Importantly,
the SDM-P-P forecasts that utilize the observed ENSO
forcing and DMI initial conditions demonstrate superior
performance of their IOD predictions compared to the
MME at lead times from 4.5 to 9.5 months in terms of
both their ACC and RMSE skill scores (red lines in
Figs. 3 and 4). This strongly suggests that IOD predic-
tions can be still further improved by improving the
ENSO predictions in these models.

b. Seasonal variation in the IOD prediction skill

To explore the seasonality of IOD forecast skill,
Figs. 5 and 6 show the ACC and NRMSE of each in-
dividual model, the MME, and the persistence, re-
spectively, as a function of target month and lead time.
Figures 5 and 6 show mostly consistent patterns among
individual models with ACC values that peak and
NRMSE values that reach their minimum at target
months in boreal fall, which is the peak IOD season
that exhibits the largest signal-to-noise ratio (Kumar
and Hoerling 2000; Liu et al. 2017) and therefore has

the highest potential predictability (Luo et al. 2007).
The MME exhibits relatively superior skill in boreal
fall than each individual model in terms of both ACC
and NRMSE scores. Still, the MME skill in boreal fall
is still significantly lower than that from our SDM-P-P
forecasts at longer lead times (Figs. 5i,1 and 6i,1), again
indicating the potential room for IOD prediction im-
provement by improving ENSO prediction.

Unlike the spring predictability barrier for the
ENSO predictions, all models show a sharp drop of
ACC and NRMSE skill at target months in boreal
winter (December and January) regardless of the
lead time (Figs. 5 and 6), indicating the existence of
the winter predictability barrier for the IOD predictions
(Wang et al. 2009; Shi et al. 2012; Feng et al. 2014). One
of the reasons that the winter barrier is said to exist is
because winter is a transitional time of the year for most
IOD events that exhibits the lowest signal-to-noise ratio.
The underlying mechanism might be due to the annual
reversal of the monsoon winds (Li et al. 2003; Schott
et al. 2009; Luo et al. 2016). The northwesterly surface
wind is weak during boreal winter and spring, the ther-
mocline is flat, and there is little or no upwelling in the
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FIG. 4. As in Fig. 3, but for RMSE (K) skill.

eastern equatorial Indian Ocean, suggesting only a
weak or absent Bjerknes feedback during this season
(Schott et al. 2009). In contrast, the strong reversal of
monsoon winds to southeasterly during boreal summer
and fall is favorable for the Indian Ocean Bjerknes
feedback and thus favors the development of 10D
events. Furthermore, a negative thermodynamic air—
sea feedback in boreal winter arises from the interac-
tion between an anomalous atmospheric anticyclone
and a cold SST anomaly off Sumatra (Li et al. 2003). Both
SDM-F-F and SDM-P-P also exhibit the sharp drop of
ACC and NRMSE during boreal winter (Figs. 5k,1 and
6k,l). This suggests the winter predictability barrier for
the IOD predictions cannot be overcome with the SDM
approach.

An interesting feature is that unlike the skill sea-
sonality in the persistence forecasts, many models’
forecasts (CCSM4, GFDL, GFDL-A, GFDL-B,NASA,
and the MME) illustrate a slight recovery of ACC and
NRMSE skill at target months in late winter/early spring
(February—April) for most lead times (Figs. 5 and 6).
However, this rebound is not evident in the CMC1 and
CMC2 models, and only weakly represented in CFSv2.
By studying the persistence of observed SEIO and WIO
SST anomalies, Ding and Li (2012) suggested that the
winter predictability barrier for SST in SEIO is more
strongly influenced by ENSO. Furthermore, this skill

rebound appears in the SDM-F-F forecasts that use
forecasted ENSO forcing and DMI initial conditions
from CMC1, CMC2, and CFSv2 models’ forecasts (see
example in Fig. Sk for CMC2). This further indicates
that a poor representation of the IOD-ENSO relation-
ship limits IOD predictability in these three models. The
superior performance of the MME is also evident for
this rebound (Figs. 5 and 6), which might be explained
by both better ENSO prediction skill (Figs. 1c,d) and a
more realistic IOD-ENSO relationship (Fig. 2).

c¢. Prediction skill for the IOD in peak season

Concentrating just on the SON season when the
IOD tends to peak, Fig. 7a shows the skillful DMI lead
time (defined by an ACC value of 0.6) ranging from
4.5-month lead (CMC1 and CMC2) to 6-month lead
(most of other NMME models and the MME), which is
significantly improved compared to a skillful 4-month
lead reported by Shi et al. (2012) using older prediction
systems. The superior performance of the MME is ev-
ident in terms of the NRMSE metric (Fig. 7b). Such a
MME benefit was also found in other multimodel
studies for ENSO (e.g., Barnston et al. 2019) and IOD
predictions (Liu et al. 2017). If a skillful prediction is
defined as ACC above 0.5 and NRMSE less than 1, the
MME provides skillful predictions of DMI in SON at
6.5-month lead (Figs. 7a,b).
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ACC seasonality: DMI (3-month running mean)
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FIG. 5. ACC between model forecasts and observations as a function of lead time and target season. Each panel highlights individual
models, the MME, persistence, SDM-F-F, and SDM-P-P. The SDM-F-F forecasts use forecasted ENSO forcing and DMI initial condi-
tions from the ensemble mean of CMC2 and CFSv2. The model names are indicated at the top right of each panel. The contour interval

is 0.1.

The SON stratified metrics for SDM-F-F forecasts are
shown in Figs. 7c and 7d. A slightly improved ACC and
considerable improved RMSE skill is seen for SDM-F-F
forecasts compared to the original forecasts from CMC1,
CMC2, CFSv2, and CCSM4 at most lead times, and for
NASA at longer lead times. Importantly, the SDM-F-F
provides a slightly better forecast than any of the origi-
nal forecasts of the NMME models. Furthermore, the
SDM-P-P forecast provide skillful IOD predictions up to
11 months ahead, which is strongly superior to the MME.

This implies there is ample scope to improve the NMME
models in terms of IOD prediction skill and that the up-
per predictability limit at longer lead times has probably
not yet been achieved because none of the NMME
models are fully capturing the observed IOD-ENSO re-
lationship (Fig. 2) and because both ENSO physics and
ENSO prediction skill could likely be further improved
upon (Kumar et al. 2017).

Figures 8a—c shows the hit rate for positive and neg-
ative IOD events in SON and the false alarm rate as a
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NRMSE seasonality: DMI (3-month running mean)
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FIG. 6. As in Fig. 5, but for the normalized root-mean-square error (NRMSE).

function of lead time for the original forecasts of the
NMME models. The observed frequency of occurrence
of positive IOD events, negative IOD events, and neu-
tral IOD events are, respectively, 11/37 (=J/T), 10/37
(=L/T),and 16/37 (=K/T) (see Table 2 for definitions of
capital letters J-T) for the period of 1982-2018. As seen
in Figs. 8a—c, the hit rate for positive IOD events and
false alarm rate from original NMME forecasts is
larger than the observed frequency of occurrence for
IOD events and exhibit large model diversity. We find
hit rates exceeding 50% ranges from 3.5 (CFSv2 and
NASA) to 8.5 months (CMC2, GFDL-A, and GFDL-B)

and the MME in between, with false alarms exceeding
50% from 1.5 (CMC2) to 7.5 months (NASA) and the
MME in between. The hit rate for negative IOD events
exhibits relatively smaller model diversity than that for
positive IOD events, with hit rate exceeding 50% ranges
from 3.5 (NASA) to 6.5 months (CCSM4). Although some
model original forecasts (such as CMC2, GFDL-A, and
GFDL-B) usually correctly predict the occurrence of IOD
events when an event actually occurs, they also often
wrongly predict an event when none occurs; so that there is
reduced confidence of an event occurring when one is
forecasted. Nevertheless, these rate skills from the NMME
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original forecasts are higher than those from older prediction
systems reported by Shi et al. (2012), indicating a marked
improvement is clearly achieved through NMME systems.
The hit rate and the false alarm rate for the SDM-F-F
forecasts are shown in Figs. 8d—f. We see reduced false
alarm rates at longer lead times for all SDM-F-F fore-
casts compared with their corresponding original fore-
casts although the hit rate for negative IOD events is
slightly decreased. The SDM-P-P forecasts at longer
lead times are the best performers in terms of false alarm
rate. Another interesting aspect shown in Fig. 8 is that the
SDM-P-P forecasts exhibit asymmetric characteristics with

hit rates for positive IOD events being in the middle-
ranked group while for negative IOD events hit rates being
the worst performers. We hypothesize that this asymmetric
characteristic is related to the asymmetry of ENSO since
the linear SDM transfers the asymmetry of the ENSO
forcing to the IOD directly. Any potential asymmetry in
the statistical ENSO-IOD relationship is not included in
the current SDM.

d. Individual IOD events

Figure 9 shows the DMI time series comparing the
forecasts from individual models and the MME with



APRIL 2020

ZHAO ET AL.

391

NMME original forecasts

] Q  Hit Rate — Postive I0D—SON b Hit Rate — Negative I0D—SON | (o] False Alarms — 10D—SON
09k -
0.8 | b
0.7 F
0.6 |
05 F
SR,
03 [ememgrorea i
0.2 | |===== CFSy2 \

—— GCSM4 L

01 8'&4‘8% SDM—P- T

O [] [] [] ] [ [ [ ] ] 0 ] ] ] ] ] ] ] ] ] O ] ] ] ] ] ] ] ] ]

012 3 456 7 8 910 0123 4546 7 8 910 012 3 456 7 8 910

Lead [months]

Lead [months]

Lead [months]

SDM-F-F forecasts using ENSO forcing and DMI initials from NNME models

d  Hit Rate — Postive I0D—SON

@ Hit Rate — Negative IOD—SON ] f

False Alarms — I0OD—SON

1 T T T T T T T T T T T T T

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

0.1 SMC2 ;SDM—P—H . 0.1F .
0 ] ] ] ] [ [ [ ] ] 0 ] ] ] ] ] ] ] ] ] O ] ] ] ] ] ] ] ] ]
0123 456 7 8 910 0123 456 7 8 910 0123 456 7 8 910

Lead [months]

Lead [months]

Lead [months]

Fi1G. 8. Hit rate for NMME original forecasts of (a) positive IOD events, (b) negative IOD events, and (c) false alarm rate for both
positive and negative events in SON that exceed 0.5 observed standard deviation (0.3 K). Abscissa is lead time in months and ordinate is
the percentage. Dashed gray lines in (a)—(c) are observed frequency of occurrence of positive, negative, and neutral events, respectively. A
1-2-1 filter across lead time was applied to the hit rate and false alarm rate prior to plotting. (d)—(f) As in (a)-(c), respectively, but for the

SDM-F-F forecasts that use forecasted ENSO forcing and DMI initial conditions from NMME models and MME.

observations throughout the 1982-2019 period. The
DMI time series for SDM-F-F and SDM-P-P forecasts
are shown in Fig. 10. The forecasts shown at 0.5-, 2.5-,
4.5-, 6.5-, and 8.5-month lead times are generally
matching the major patterns seen in the observations
successfully, but their agreement weakens as expected
with increasing lead times.

There is a large event-by-event forecast skill diversity
evident for the IOD predictions among the NMME
models (Fig. 9). This diversity arises from different
contributions of ocean—atmosphere coupled processes
that contribute to the development of the Indian Ocean
dipole (Tanizaki et al. 2017). The strong positive IOD
events of 1997 and 2015, which co-occurred with the
super El Nifio events of 1997/98 and 2015/16 in the
Pacific (see observed N3.4 anomalies in Fig. 11), re-
spectively, were well predicted by most of individual

models and by the MME even at lead times longer than
two seasons, in terms of magnitude, development phase
timing, and decay phase timing. Skillful predictions up
two seasons in advance by most of individual models and
by the MME hold also true for the 1998 and 2010 neg-
ative IOD events, which co-occurred with strong La
Nifia events (Fig. 11). Consistent with Zhao et al. (2019),
CFSv2 failed to predict the occurrence of the 2015 IOD
event one season ahead while the SDM successfully
predict the event two seasons in advance.

The 2010 negative IOD event was well predicted
in CCSM4, CFSv2, GFDL, GFDL-A, and GFDL-B
models two seasons ahead, but was not successfully
predicted by CMC1, CMC2, NASA, and the MME
(Fig. 9). In contrast, Fig. 10 shows that the 2010 event
was successfully predicted two seasons ahead by the
SDM-F-F with forecasted ENSO forcing from CMC1
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and CMC2, but was not successfully predicted two
seasons ahead by the SDM-F-F with forecasted ENSO
forcing from CCSM4, CFSv2, GFDL, GFDL-A, GFDL-B,
and NASA due to the strong warm biases in the
forecasted ENSO conditions at lead times of up to two
seasons in these models (Fig. 11). Importantly, the
2010 event was well predicted in the SDM-P-P two
seasons ahead, suggesting the dominate role of ENSO
forcing in this event. It also suggests that the suc-
cessful prediction of the 2010 IOD event in the orig-
inal CCSM4, CFSv2, GFDL, GFDL-A, and GFDL-B
forecasts are potentially due to error compensation
between ENSO forcing and Indian Ocean intrinsic
processes.

The strongest negative IOD event co-occurred in 2016
with a weak La Nifia condition. Figure 10 shows that
SDM-P-P failed to predict the development phase of the
2016 10D event during June—August at a lead time of
2.5 months. The mature phase of the 2016 IOD event
was well predicted 4.5 months ahead by SDM-P-P but up
two seasons ahead by SDM-F-F forecasts using forcings
from CMC1, GFDL, GFDL-A, GFDL-B, and NASA.
The better performance of the SDM-F-F at longer lead
times may be related to the cold biases of predicted
N3.4, that is, the NMME models predicted stronger La
Nifia conditions than what actually occurred (Fig. 11).
This supports the finding by Lim and Hendon (2017) that
Indian Ocean surface and subsurface conditions may
have played a dominant role in the 2016 negative IOD
event based on an analysis of forecast sensitivity experi-
ments using the Australian Bureau of Meteorology’s
dynamical seasonal forecast system. Lu et al. (2018b) also
demonstrated that skillful predictions of the 2016 IOD
event in two operational models was due to realistic
representations of observed air-sea interactions and the
precursor signal of early subsurface warming in the
eastern Indian Ocean.

The 1994 and 2006 positive IOD conditions are two
important examples of events that occurred during a
neutral ENSO phase. The amplitudes and impacts of
these events are comparable to the strongest 1997 IOD
that co-occurred with El Nifio conditions in the Pacific
(Guan and Yamagata 2003; Luo et al. 2008). None of the
original NMME model forecasts (including the MME)
are able to predict the development phase of the 1994
10D event during April-June (2 months in advance).
Since there are only seasonally modulated damping
processes controlling the evolution of the DMI in the
SDM during ENSO neutral conditions, it is expected
that the SDM forecasts fail to predict the development
phase of ENSO-independent IOD events. Once the IOD
starts gaining amplitude in JJA 1994, both the NMME
models and the SDM can predict the event occurrence and
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decay phase timing during October-December (OND)
one season ahead (Figs. 9 and 10). This highlights that the
development phase timing of ENSO-independent 10D
events is very challenging to predict.

In contrast, the ENSO-independent 2006 positive IOD
event was well predicted two seasons ahead by some of the
NMME models (GFDL-A, GFDL-B, and CCSM4) in
terms of magnitude, development phase timing, and decay
phase timing. The ENSO-independent 2012 positive IOD
event was predicted best by the GFDL, GFDL-A, and
GFDL-B models. This suggests that the GFDL-A and
GFDL-B models exhibit superior performance in pre-
dicting IOD event during a neutral ENSO state com-
pared to the other NMME models. These events may
serve as important examples that might help identify
potential root causes of the low predictability in some
models and higher predictability in others, thereby
contributing to potential future skill improvement of
ENSO-independent IOD event predictions.

A main reason for the limited IOD predictive skill in
the NMME models is the considerable false alarm rate
of negative/positive IOD events during neutral IOD
phases (Fig. 9). Some false alarms occur ubiquitously
among most of NMME models at longer lead times, such
as the negative IOD events predicted for 1983, 1988, and
1999 that did not occur in reality. The same holds true
for the predicted 1993 positive IOD event that did not
occur. Some other false alarms are more model depen-
dent. For instance, the false alarm of a predicted 2014
positive IOD event in GFDL, GFDL-A, and GFDL-B
did not occur in other models, and was thus only weakly
represented in the MME. The false alarm of the predicted
2000 negative IOD event at longer lead times in CMC1,
CMC2, CCSM4, and NASA did not occur in CFSv2,
GFDL, GFDL-A, and GFDL-B, and was also only
weakly represented in the MME. Additionally, the ob-
served 2017 positive IOD event reached its mature phase
from May to July. However, its mature phase was wrongly
predicted to occur between August and November by
most of the NMME models and the MME.

The improvement of the SDM in predicting 10D
events compared to the original NMME model forecasts
is shown by the fewer amount of false alarms in the
SDM (Fig. 10). Some false alarms (such as 1983, 1993,
2001, and 2009) in the original NMME model forecasts
at longer lead times (Fig. 9) are not evident in the
SDM-P-P forecast. Also they are not evident or only
weakly represented in the SDM-F-F predictions that
use forecasted ENSO forcing from the corresponding
NMME model (Fig. 10). For example, the false alarm of
the predicted 1983 negative IOD event disappears in
the SDM-F-F forecasts for CMC2, CCSM4, and CFSv2.
In addition, it is only weakly represented in the SDM-F-F
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forecasts for CMC1, GFDL, GFDL-A, and GFDL-B
(Fig. 10), which show considerable cold biases of the
predicted N3.4 (Fig. 11). For another example, the
false alarm of the predicted 2001 positive IOD event
in the original forecasts weakens in the corresponding
SDM-F-F predictions of CFSv2, GFDL-A, and GFDL-B
(comparing Figs. 9 and 10), in which there are consider-
able warm biases of the predicted N3.4 (Fig. 11). These
results suggest that cold and warm biases of the predicted
N3.4 may cause false alarms of negative and positive
IOD events, respectively, in the coupled models.
Recently, Tompkins et al. (2017) demonstrated that the
“overconfidence problem” in ENSO prediction is a com-
mon deficiency in most dynamical seasonal prediction
systems including the NMME models. Therefore, reducing
the false alarm rate in ENSO prediction should also lead
to a reduction of the false alarm rate in IOD prediction.

5. Conclusions and discussion

In this study, predictability of the IOD (measured by
the DMI) was studied by analyzing the hindcasts and
real-time forecasts from eight NMME models with the
help of a simple recently developed SDM (Stuecker
et al. 2017; Zhao et al. 2019). As for the overall IOD
predictive skill in original forecasts from NMME
models, the MME forecast is found to be superior to
the forecast of each individual model at short lead
times (1.5-4.5 months). The three best performing in-
dividual models are CCSM4, GFDL-A, and GFDL-B
(Fig. 1). If an ACC value of 0.5 is used as a standard of
skillful predictions, we find that the MME IOD forecast
is skillful up to about 4-5-month lead time, which is
much longer than the skillful lead time of 2-3 months
seen in ENSEMBLES (Liu et al. 2017). This indicates a
gradual improvement of IOD predictions in current
seasonal forecast systems.

Although CFSv2 and CMC2 are top-ranked models in
predicting ENSO, they exhibit poor predictive skill for
the IOD in terms of both ACC and RMSE (Fig. 1). The
poor IOD prediction skills seen in CFSv2, CMC2, as
well as CMC1, are likely related to a poor representation
of the observed statistical and physical IOD-ENSO re-
lationship in these models (Fig. 2). This attribution
statement is further supported by significantly improved
skills of SDM-F-F DMI forecasts that use forecasted
ENSO forcing from these three models, in which the
observed IOD-ENSO relationship is well reproduced
(Figs. 3 and 4). In general, the skills for SDM-F-F DMI
forecasts that use forecasted ENSO forcing from other
NMME models were better than those for the NMME
original DMI forecasts. Importantly, the SDM-P-P DMI
forecasts demonstrate superior performance of 10D
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predictions than the MME at lead-times of 4.5-9.5 months
in terms of both ACC and RMSE skill scores (Figs. 3
and 4), shedding light on the potential room for im-
provement of IOD prediction skill by improving ENSO
predictions.

An analysis on the effects of seasonality verifies the
existence of the winter predictability barrier for the IOD
predictions in NMME models. This is consistent with the
low predictability limit of monthly SSTs over south-
eastern tropical Indian Ocean discussed by Li and Ding
(2013). Comparing SDM-F-F and SDM-P-P forecasts
confirms that the winter predictability barrier may not
be overcome using the SDM approach. Most of models
and the MME exhibit a slight recovery of ACC and
NRMSE skills at target months in late boreal winter and
early spring. This skill rebound does not exist in the
original IOD forecasts from CMC1, CMC2, and CFSv2,
but is seen in the corresponding SDM-F-F forecasts for
these three models, suggesting that the winter predict-
ability barrier for IOD predictions is strongly influenced
by ENSO, consistent with Ding and Li (2012).

There is large event-by-event skill diversity for the
IOD predictions among NMME models. The superior
performance of the SDM is evident for most of the IOD
events, especially IOD events that co-occurred with
strong El Niflo/La Nifia events. Moreover, many false
alarms at longer lead times in the original forecasts of
NMME models and the MME forecast are much re-
duced in the SDM-F-F forecasts for the correspond-
ing individual model. Our results also suggest that
cold/warm biases of the predicted N3.4 may cause
false alarms of negative/positive IOD events in the
coupled models.

Our results have important implications for future
model development. The physical basis for the IOD-
ENSO relationship in the SDM is that the anomalous
surface wind stress and heat fluxes induced by the
seasonally modulated atmospheric ENSO (C-mode)
circulation in the Indian Ocean are represented by
the right-hand side ENSO forcing term in Eq. (1).
Therefore, we suspect that the biases in the IOD-
ENSO relationship in some CGCMs mostly arise from
biases in the ENSO atmospheric teleconnection to the
Indian Ocean, involving processes (and parameteri-
zations in coupled models) of convection, clouds, and
radiation. However, here we did not eliminate other
potential predictability sources that might arise from
Indian Ocean intrinsic dynamics via recharge oscilla-
tor dynamics (Feng and Meyers 2003; McPhaden and
Nagura 2014; Wang et al. 2016; Lim and Hendon 2017;
Lu et al. 2018b). Additionally, previous studies re-
ported that the ENSO-IOD relationship varies de-
pending on different ENSO types (Zhang et al. 2015;
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Fan et al. 2017). Our SDM could potentially be further
improved in the future by including Indian Ocean
subsurface heat content as an additional resolved process
and by considering different ENSO flavors.
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