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ABSTRACT

This study assesses the predictive skill of eight North AmericanMultimodel Ensemble (NMME)models in

predicting the Indian Ocean dipole (IOD). We find that the forecasted ensemble-mean IOD–El Niño–
Southern Oscillation (ENSO) relationship deteriorates away from the observed relationship with increasing

lead time, which might be one reason that limits the IOD predictive skill in coupled models. We are able to

improve the IOD predictive skill using a recently developed stochastic dynamical model (SDM) forced by

forecasted ENSO conditions. The results are consistent with the previous result that operational IOD pre-

dictability beyond persistence at lead times beyond one season is mostly controlled by ENSO predictability

and the signal-to-noise ratio of the Indo-Pacific climate system. The multimodel ensemble (MME) investi-

gated here is found to be of superior skill compared to each individual model at most lead times. Importantly,

the skill of the SDM IOD predictions forced with forecasted ENSO conditions were either similar or better

than those of the MME IOD forecasts. Moreover, the SDM forced with observed ENSO conditions exhibits

significantly higher IOD prediction skill than theMME at longer lead times, suggesting the large potential

skill increase that could be achieved by improving operational ENSO forecasts. We find that both cold and

warm biases of the predicted Niño-3.4 index may cause false alarms of negative and positive IOD events,

respectively, in NMMEmodels. Many false alarms for IOD forecasts at lead times longer than one season

in the original forecasts disappear or are significantly reduced in the SDM forced by forecasted ENSO

conditions.

1. Introduction

The Indian Ocean dipole (IOD) phenomenon is a

prominent climate pattern in the tropical Indian

Ocean, characterized by year-to-year fluctuations

of a dipole structure in sea surface temperature (SST)

anomalies between the southeastern equatorial Indian

Ocean (SEIO) and the western equatorial Indian Ocean

(WIO) (Saji et al. 1999; Webster et al. 1999). Like

El Niño–Southern Oscillation (ENSO) in the Pacific, the

changes in the zonal SSTgradient and coherent thermocline

anomalies across the Indian Ocean is coupled with the

atmospheric circulation (Yamagata et al. 2004; Schott

et al. 2009; McPhaden and Nagura 2014). Importantly,

the IOD affects weather and climate in many areas of
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the world, especially in Indian Ocean rim areas such as

Australia, India, East Africa, and East Asia (Ashok

et al. 2001, 2003; Guan and Yamagata 2003; Saji and

Yamagata 2003; Yamagata et al. 2004; Yuan et al.

2008; Cai et al. 2011; Qiu et al. 2014; Lu et al. 2018a).

Therefore, skillful IOD predictions allow for the im-

plementation ofmitigationmeasures to climate variability

and thereby can provide societal benefits in various areas

such as agriculture, fisheries, marine ecosystems, human

health, as well as potential increased resilience to nat-

ural disasters (e.g., Abram et al. 2003; Cai et al. 2009;

Hashizume et al. 2012; Takaya et al. 2014; Yuan and

Yamagata 2015).

The predictability of Indian Ocean SST anomalies

associated with the IOD has previously been assessed

using a range of coupled climate models and statisti-

cal models (e.g., Wajsowicz 2005, 2007; Luo et al.

2005, 2007; Song et al. 2008; Zhao and Hendon 2009;

Dommenget and Jansen 2009; Shi et al. 2012). For

instance, Shi et al. (2012) assessed the predictive skill

of the SST anomalies associated with the IOD for the

period of 1982–2006 by using ensemble seasonal

forecasts from six coupled models developed by the

Australian Bureau of Meteorology, National Centers

for Environmental Prediction (NCEP), European

Centre forMedium-RangeWeather Forecasts (ECMWF),

and Frontier Research Centre for Global Change. They

found that themaximum lead time for skillful prediction

of SSTs in the WIO is about 5–6 months compared to

only 3–4 months in the SEIO (when all start calendar

months are considered). Other studies found that skillful

prediction of IOD (i.e., the anomalous zonal SST gra-

dient) events is limited to a lead time of approximately

one season (Shi et al. 2012; Liu et al. 2017), with slightly

higher skill seen only for some individual strong IOD

events, perhaps up to about two seasons (Luo et al. 2008;

Shi et al. 2012). The prediction failure of IOD events at

longer lead times was mostly attributed to a strong bo-

real winter ‘‘predictability barrier’’ (Wajsowicz 2005,

2007; Feng et al. 2014) (i.e., forecast skill drops rapidly

for the target boreal winter season regardless of the

forecast start time).

Some studies (Song et al. 2008; Zhao and Hendon

2009; Yang et al. 2015) showed that IOD events that co-

occur with ENSO events are more predictable, while the

remaining events appear to be initiated by weather noise

and exhibit a lower predictability. These results indicate

that a poorly simulated IOD–ENSO relationship might

be one reason that limits the predictive skill of the IOD

in operational forecasts (Shi et al. 2012). In fact, there

is a considerable debate regarding the IOD–ENSO re-

lationship within the scientific community. On one hand,

some modeling studies (Iizuka et al. 2000; Behera et al.

2006) argued that the IOD is in fact an intrinsic climate

mode that is largely independent from ENSO. For in-

stance, Behera et al. (2006) found that only about 42%

of IOD events were affected by the ENSO. On the other

hand, other studies hypothesized that the IOD mode

is not independent of the tropical Pacific and ENSO

(Annamalai et al. 2003; Loschnigg et al. 2003; Zhang

et al. 2015; Yang et al. 2015; Kajtar et al. 2017; Stuecker

et al. 2017). By using a partially coupled model experi-

ment with decoupled SST over the tropical Pacific,

Crétat et al. (2018) and Wang et al. (2019) showed that

the IOD still exists without ENSO, but with weaker

amplitude and reduced Bjerknes feedback in the Indian

Ocean. Furthermore, several studies demonstrated evi-

dence that only about one-third of IOD events occur

independently of ENSO events (Loschnigg et al. 2003;

Stuecker et al. 2017). Recently, Stuecker et al. (2017)

developed a new null hypothesis framework for the IOD

and showed that most of the observed IOD variability

can be explained by deterministic interactions between

the annual cycle and ENSO [ENSO combination mode

(C-mode)] (Stuecker et al. 2013, 2015). Zhao et al.

(2019) further demonstrated improved IOD predictions

using seasonally modulated ENSO forcing and provided

evidence that IOD predictability beyond persistence is

largely controlled by ENSO predictability and signal-to-

noise ratio.

In operational seasonal forecasting, the use of mul-

timodel ensemble prediction generally results in im-

proved skill due to error compensation and greater

consistency and reliability between models (Hagedorn

et al. 2005; DelSole et al. 2014). The North American

Multimodel Ensemble (NMME) system (Kirtman et al.

2014) was recently developed to harness this idea. The

NMME system is used for seasonal predictions since

2011 and was made an operational forecast system in

2016. Many studies have shown that the NMME system

has advanced the forecasting skill of ENSO and rele-

vant climate variables (Barnston et al. 2015, 2019; Chen

et al. 2017).

Given this recent improvement of ENSOprediction in

the NMME system, one might wonder if a similar skill

improvement also exists for IOD prediction or if the

enhanced ENSO skill can be translated into a better

IOD prediction skill using the simple model framework

developed by Stuecker et al. (2017) and Zhao et al.

(2019). Furthermore, we ask the question whether we

are near the intrinsic predictability limit associated with

the chaotic nature of the coupled ocean–atmosphere

system. For instance, Newman and Sardeshmukh

(2017) argued that the Indian Ocean SST forecast

skill of the NMME system is close to the predict-

ability limit estimated using signal-to-noise ratios
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from a simplified NMME linear inverse model (LIM)

forecast. Furthermore, Liu et al. (2017) suggested

that the SST forecast at each pole of the IOD has

little room for improvement, while there is a large

potential to improve the gradient forecasts of the two

poles, at least by 0.2–0.3 correlation skill, based on

potential predictability estimates using multimodel

forecasts from the Ensemble-Based Predictions of

Climate Changes and Their Impacts (ENSEMBLES).

Such potential predictability estimates are of course

model dependent; therefore, it is interesting to com-

pare IOD potential predictability using the NMME

models with the newly developed stochastic dynami-

cal IODmodel (Stuecker et al. 2017; Zhao et al. 2019).

The remainder of this paper is organized as follows.

Section 2 presents the data and methodology. Section 3

evaluates the forecast skill of the NMME systems.

Section 4 discusses the further improvements using the

SDM. Section 5 includes the discussion and summarizes

the main conclusions.

2. Data and methodology

a. Data

We utilize the hindcasts (1982–2010) and real-time

forecasts (2011–19) of eight models from the NMME

project, which are CMC1-CanCM3, CMC2-CanCM4,

COLA-RSMAS-CCSM4, NCEP-CFSv2, GFDL-CM2p1-

aer04,GFDL-CM2p5-FLOR-A06,GFDL-CM2p5-FLOR-

B01, and NASA-GMAO-062012. For simplicity, these

model names are shortened as CMC1, CMC2, CCSM4,

CFSv2, GFDL, GFDL-A, GFDL-B, and NASA, respec-

tively. Table 1 summarizes the time period, ensemble size,

and lead months for these eight models used here. The

number of ensemble size ranges from 10 to 24, and the

maximum lead time varies from 8.5 to 11.5 months.

The NMME forecasts were initialized on or near the

first day of each month. The lead time is defined as

the number of months between forecast start time and

the center of the month being predicted. For example,

for a forecast starting at the beginning of January, the

forecast for January has 0.5-month lead, for February a

1.5-month lead, and so on. Besides looking at the en-

semble mean forecast characteristics of each individ-

ual model, the grand multimodel ensemble (MME)

forecasts are studied with equal weight given to each

individual model. All gridded SST forecast data on a

global 18 grid analyzed here are publicly available in

the International Research Institute for Climate and

Society (IRI) Data Library (http://iridl.ldeo.columbia.edu/

SOURCES/.Models/.NMME). The SST observations used

here are the NOAA Optimum Interpolation SST data,

version 2 (Reynolds et al. 2002; http://www.esrl.noaa.gov/

psd/data/gridded/data.noaa.oisst.v2.html).

Monthly anomalies are calculated with respect to the

climatology from January 1982 to December 2010 in

both the observations and most of the NMME models

except for CCSM4 and CFSv2. Several studies have

noted a discontinuity in the forecast bias of the CFSv2

SST hindcasts for the central and eastern tropical

Pacific occurring around 1999, which has been related

to a discontinuity in the data assimilation and initiali-

zation procedure (Xue et al. 2011; Kumar et al. 2012;

Barnston and Tippett 2013; Barnston et al. 2019). Both

CFSv2 and CCSM4 model share the same initial con-

ditions (Kirtman et al. 2014), which come from the

Climate Forecast SystemReanalysis (Saha et al. 2010).

Therefore, following the method of Barnston et al.

(2019), we eliminate the discontinuous forecast biases

by calculating the forecast anomalies using two different

climatological periods of 1982–98 and 1999–2010, re-

spectively, for these two models. In calculating the

anomalies for the NMME models, the dependence on

both season and forecast lead time are considered fol-

lowing Kumar et al. (2017).

The IOD mode index (DMI) is defined as the area-

averaged SST anomalies in the WIO (108S–108N, 508–
708E) minus those in the SEIO (108S–08, 908–1108E)
(Saji et al. 1999). The predictive skill of the IOD has

been studied by measuring the predictive skill of the

DMI in many previous studies (e.g., Luo et al. 2007;

Liu et al. 2017; Doi et al. 2017). The Niño-3.4 in-

dex (hereafter N3.4) is defined as the SST anomalies

averaged over the region 58S–58N and 1208–1708W.

TABLE 1. Basic information for the eight NMME climate models.

Model Name used here Period Ensemble size Lead times (months)

CMC1-CanCM3 CMC1 Jan 1982–Jul 2019 10 0.5–11.5

CMC2-CanCM4 CMC2 Jan 1982–Jul 2019 10 0.5–11.5

COLA-RSMAS-CCSM4 CCSM4 Jan 1982–Jul 2019 10 0.5–11.5

NCEP-CFSv2 CFSv2 Jan 1982–Jul 2019 24 0.5–9.5

GFDL-CM2p1-aer04 GFDL Jan 1982–Dec 2017 10 0.5–11.5

GFDL-CM2p5-FLOR-A06 GFDL-A Jan 1982–Jul 2019 12 0.5–11.5

GFDL-CM2p5-FLOR-B01 GFDL-B Jan 1982–Jul 2019 12 0.5–11.5

NASA-GMAO-062012 NASA Jan 1982–Jan 2018 12 0.5–8.5
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The N3.4 is used by many operational centers as a key

oceanic variable that describes the ENSO state.

b. A stochastic dynamical model in predicting the
DMI and hindcast experiments

We use a recently developed stochastic dynamical

model (SDM) for the DMI by Stuecker et al. (2017) and

Zhao et al. (2019). In this framework, the continuous

time evolution of the DMI is described by the following

equation:

dT

dt
52l

0
[11D cos(v

a
t1u

D
)]

1a
0
[11A cos(v

a
t1u

A
)]N3:4(t)1s

0
j(t) , (1)

where T is the monthly DMI. The three terms on the

right-hand side of Eq. (1) represent seasonally modu-

lated damping that arises from the Indian Ocean

coupled ocean–atmosphere feedback, the seasonally

modulated ENSO forcing, and the stochastic forcing,

respectively. The parameters of growth rate (l0, D,

and uD), coupling strength (a0, A, and uA), and sto-

chastic forcing strength (s0) can be estimated via

multivariate linear regression using the observed DMI

andN3.4 indices following Zhao et al. (2019). The term

va denotes the annual frequency of the annual cycle

[5p/(6 months)]. We used the training period of 1982–

98 for estimating all the parameters as in Zhao et al.

(2019). We find a very similar performance of the

SDM when we train the parameters using the period

after 1999 instead. This suggests the robustness of the

SDM parameters despite observed decadal changes

in IOD predictability (Han et al. 2014; Liu et al.

2017). We will also neglect the stochastic forcing

term—which can be a crucial factor in the initiation

of observed IOD events—as we compare our IOD

model skill to ensemble mean forecasts following Zhao

et al. (2019).

We conducted three types of experiments using the

SDM. In the first experiment (SDM-P-P), we inte-

grated the SDM initialized from the monthly observed

(thus ‘‘perfect’’) DMI conditions by prescribing the

observed/perfect ENSO forcing. This experiment is a

measure of the upper IOD predictability limit pro-

vided by ENSO. In the second experiment (SDM-F-P),

the observed ENSO forcing was replaced by the

forecasted N3.4 index in each individual NMME

model. Finally, in the third experiment (SDM-F-F),

the ENSO forcing was the same as SDM-F-P but the

initial DMI conditions were replaced with the DMI

index at 0.5-month lead in each individual NMME

model. The SDM-F-F is the SDM version that can be

used in an operational forecast setting. Importantly,

our approach is linear when we use fixed parameters

and neglect the stochastic forcing term. Therefore, we

would obtain the same result if instead our method

would be applied to all the members independently

and then the ensemble average of the resulting DMI

forecasts would be calculated.

c. Forecast verification metrics

To quantify the deterministic skill of the IOD

predictions in different models and approaches with

respect to the observations we use the anomaly cor-

relation coefficient (ACC) and the root-mean-square

error (RMSE)metrics. TheACC andRMSEmetrics are

two common measures of forecast accuracy quantifying

errors in sign and amplitude. To assess seasonal per-

formance, the RMSE is standardized for each season

individually and referred to as normalized RMSE

(NRMSE), so that the climatology forecasts (zero

anomaly) result in the same RMSE-based skill (of

zero) for all seasons and that all season’s RMSE

contribute equally to a seasonally combined RMSE

(Barnston et al. 2012). For skill comparisons between the

predictions from models of the International Research

Institute for Climate and Society (IRI)/Climate Prediction

Center (CPC) IOD prediction plume and other seasonal

forecast products, which are for 3-month-averaged SST

data, 3-month running means are used prior to calculating

the deterministic verification metrics. The Fisher z trans-

formation was used to test statistical significance of the

ACC differences.

Large-amplitude IOD events exhibit the most pro-

nounced climate impacts and thus are most important to

predict. Following Stanski et al. (1989) and Shi et al.

(2012), we further assess the ability of the models to

predict three categories of IOD events: (i) positive IOD

events that have a DMI amplitude exceeding 0.5

standard deviation, (ii) negative IOD events that

have a DMI amplitude less than 0.5 standard devia-

tion, and (iii) neutral IOD events that fall in between.

The contingency table (Table 2) is made for the oc-

currence of observed and predicted IOD events using

the DMI in September–November (SON) for each in-

dividual model. We use the observed 0.5 standard de-

viation threshold to categorize the model forecasts

following Shi et al. (2012) for better comparison with

their results. The hit rate (HR) for correctly forecast-

ing the occurrence of a positive/negative IOD event is

defined as

HR
positive

5
a

a1 b1 c
3 100% or

HR
negative

5
i

g1 h1 i
3 100%. (2)
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The false alarm rate (FAR), which is a measure of in-

correctly forecasting an event when in reality a neutral

event occurred, is defined as

FAR5
d1 f

d1 e1 f
3 100%. (3)

See Table 2 for the definitions of the letters a–i. Based

on the threshold, 11 (a 1 b 1 c) positive IOD events,

10 (g 1 h 1 i) negative IOD events, and 16 (d 1 e 1 f)

neutral IOD events occur in the SON season during

1982–2018.

3. Prediction skill of IOD and biases of
IOD–ENSO relationships in NMME models

Figures 1a and 1b shows the all-months stratifiedACC

andRMSE skill scores between forecasted and observed

DMI as function of lead time. For initialization skill at

0.5-month lead, the MME (black lines in Figs. 1a,b)

demonstrates the best ACC andRMSE skill scores. This

result indicates a relatively better initialization skill for

the zonal gradient of Indian Ocean SST when we use a

multimodel ensemble mean. The CFSv2, NASA, and

CCSM4models (red, purple, and blue lines in Figs. 1a,b,

respectively) are among the best performers in terms of

initialization skill.

Each individual model and the MME are character-

ized by an ACC above persistence and an RMSE lower

than persistence. For short lead times of 1.5–4.5 months,

each individual model does not show statistically sig-

nificant ACC and RMSE differences with the other

models, while the MME is superior to each individual

model, characterized by a higher ACC (about 0.1) and

lower RMSE (about 0.05K). For longer than 5.5-month

lead times, the ACC drops below 0.5 and the RMSE

increases to values as large as the climatological

standard deviation of the DMI for all models, sug-

gesting very limited predictive skill of the IOD for

current operational models at longer lead times. The

GFDL-A, GFDL-B (long dashed and solid orange

lines in Figs. 1a,b), and CCSM4 models are among the

top-ranked models for the ACC at leads longer than

5.5months. TheMMEalso shows competitiveACC skill

and better RMSE skill than the top-ranked models at

leads longer than 5.5 months. These results indicate the

superior performance of the MME for the IOD pre-

dictions compared to individual models, consistent with

Wu and Tang (2019).

Given the important role of the IOD–ENSO rela-

tionship in IOD predictions (Song et al. 2008; Zhao

and Hendon 2009; Luo et al. 2016; Stuecker et al.

2017; Zhao et al. 2019), we next evaluate the perfor-

mance of the NMMEmodels in predicting ENSO and

the IOD–ENSO relationship. Figures 1c and 1d shows

the all-months stratified ACC and RMSE skill scores

between forecasted and observed N3.4 index as func-

tion of lead time. While the MME exhibits the highest

ACC and RMSE skill scores for the DMI among the

NMMEmodels at nearly all lead times (Figs. 1a,b), the

MME shows the highest ACC skill for the N3.4 index

only at short lead times (0.5–3.5 months). At longer

lead times, CMC2 has the highest skill (at 4.5 and

5.5 months) and CFSv2 exhibits good skills at even

longer lead times (9.5 months; Figs. 1c,d). This out-

come is consistent with the findings of Kirtman et al.

(2014) and Barnston et al. (2019), which showed that

some individual models may be superior to the MME

at certain lead times, however theMME is always close

to being top ranked.

As an important proxy for the IOD–ENSO rela-

tionships, Figs. 2a and 2b shows the lead–lag cross

correlations between monthly N3.4 and DMI for the

observations and the forecasts at lead times of 4.5 and

7.5 months for the NMME models. The IOD–ENSO

relationship deteriorates away from the observed

correlation with increasing lead time in some models

(that consist of multiple ensemble members each; see

Table 1) such as CFSv2 and CMC2. Although the

predictive skill of ENSO has significantly improved

from CMC1 to CMC2 (green dashed and solid lines in

Figs. 1c,d), an improvement of predictive skill for the

IOD is not clearly evident (Figs. 1a,b). It is important

to note that the CMC2 model (solid green lines in

Figs. 1a,b) is an outlier as the DMI RMSE in this model

is as large as the DMI RMSE of the persistence forecast

and also larger than theDMIRMSE in theCMC1model

(long dashed green lines in Figs. 1a,b). This may be re-

lated to a poor representation of the IOD–ENSO rela-

tionship in both the CMC1 and CMC2 models with a

TABLE 2. Contingency table of forecasting positive, neutral, and negative IOD events.

Observed positive IOD Observed neutral Observed negative IOD Total

Forecasted positive IOD a d g M (a 1 d 1 g)

Forecasted neutral b e h N (b 1 e 1 h)

Forecasted negative IOD c f i O (c 1 f 1 i)

Total J (a 1 b 1 c) K (d 1 e 1 f) L (g 1 h 1 i) T (a 1 b 1 c 1 d 1 e 1 f 1 g 1 h 1 i)
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positive lead–lag correlation coefficient for ENSO leading

IOD months, which is opposite to what is seen in the

observations and most other models (Figs. 2a,b). In

this sense, the relatively poor predictive skill for the

IOD in CFSv2 (Figs. 1a,b) might also be related to a

poor representation of the IOD–ENSO relationship

in CFSv2, with a much higher negative correlation for

ENSO leading IOD months in CFSv2 compared to

the observations (Figs. 2a,b). Overall, CCSM4 per-

forms best simulating the IOD–ENSO relationship in

terms of a cross-correlation relationship that looks

closest to the observations among the NMMEmodels

(Figs. 2a,b).

Importantly, these biased lead–lag cross correlations

betweenmonthly N3.4 andDMI for the forecasts at lead

times of 4.5 and 7.5 months can be corrected using the

SDM (Figs. 2c,d) since it utilizes the observed IOD–

ENSO relationship (Stuecker et al. 2017; Zhao et al.

2019). It should be noted that the SDM overestimates

the positive correlations of DMI leading ENSO by the

peak time around 2 months. This is because the sto-

chastic forcing as well as some intrinsic Indian Ocean

processes are not included in the current SDM. In the

following section, we provide evidence that utilizing the

observed IOD–ENSO relationship in the SDM can im-

prove the IOD predictive skill in the NMME models.

FIG. 1. (a) Anomaly correlation coefficient (ACC) and (b) root-mean-square error (RMSE; K) skill between the

all-months observed and forecasted DMI, as a function of lead time for the individual models. (c),(d) As in (a) and

(b), but for theNiño-3.4 index. Both forecasts and verificationwere smoothedwith a 3-month runningmean prior to

computing the metrics.
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4. Improved performance of SDM in predicting
the IOD compared to NMME models

a. Deterministic all-months stratified skill of IOD
prediction

The SDM forecasts driven by forecasted ENSO

forcing from the CMC1, CMC2, and CFSv2 models

exhibit significantly better predictive skill of the IOD

in terms of both ACC and RMSE than the original IOD

forecasts from each individual model (Figs. 3 and 4). For

example, compared with the original CMC2 forecast,

the corresponding (forced with forecasted CMC2ENSO

conditions) SDM-F-F exhibits an improved ACC value

of 0.15 and RMSE value of 0.15K averaged over lead

times from 4.5 to 9.5 months. Similarly, an improvement

using the SDM is also evident for the NASA model at

lead times longer than 5.5 months. The ACC scores of

our SDM-F-F forecasts using forecasted ENSO forcing

from the GFDL, GFDL-A, and GFDL-B models are

not statistically different from those in the correspond-

ing original models (Figs. 2e–g), partly due to relatively

low ENSO prediction skills of these models (sharp drop

of ACC and RMSE skill for N3.4 with increasing lead

times; Figs. 1c,d). In general, the RMSE scores are

FIG. 2. Lead/lag cross correlations between monthly Niño-3.4 index and DMI for the observations (black bars)

and the forecasts (curves) at lead times of (a),(c) 4.5 and (b),(d) 7.5 months for (top) the NMME models and

(bottom) the SDM-F-F that uses forecasted ENSO forcing and DMI initial values from the NMME models.
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improved in the SDM compared to the original models,

especially at longer lead times, approximately at the

same level or better than theMME (Fig. 4). Importantly,

the SDM-P-P forecasts that utilize the observed ENSO

forcing andDMI initial conditions demonstrate superior

performance of their IOD predictions compared to the

MME at lead times from 4.5 to 9.5 months in terms of

both their ACC and RMSE skill scores (red lines in

Figs. 3 and 4). This strongly suggests that IOD predic-

tions can be still further improved by improving the

ENSO predictions in these models.

b. Seasonal variation in the IOD prediction skill

To explore the seasonality of IOD forecast skill,

Figs. 5 and 6 show the ACC and NRMSE of each in-

dividual model, the MME, and the persistence, re-

spectively, as a function of target month and lead time.

Figures 5 and 6 showmostly consistent patterns among

individual models with ACC values that peak and

NRMSE values that reach their minimum at target

months in boreal fall, which is the peak IOD season

that exhibits the largest signal-to-noise ratio (Kumar

and Hoerling 2000; Liu et al. 2017) and therefore has

the highest potential predictability (Luo et al. 2007).

The MME exhibits relatively superior skill in boreal

fall than each individual model in terms of both ACC

and NRMSE scores. Still, the MME skill in boreal fall

is still significantly lower than that from our SDM-P-P

forecasts at longer lead times (Figs. 5i,l and 6i,l), again

indicating the potential room for IOD prediction im-

provement by improving ENSO prediction.

Unlike the spring predictability barrier for the

ENSO predictions, all models show a sharp drop of

ACC and NRMSE skill at target months in boreal

winter (December and January) regardless of the

lead time (Figs. 5 and 6), indicating the existence of

the winter predictability barrier for the IOD predictions

(Wang et al. 2009; Shi et al. 2012; Feng et al. 2014). One

of the reasons that the winter barrier is said to exist is

because winter is a transitional time of the year for most

IODevents that exhibits the lowest signal-to-noise ratio.

The underlying mechanism might be due to the annual

reversal of the monsoon winds (Li et al. 2003; Schott

et al. 2009; Luo et al. 2016). The northwesterly surface

wind is weak during boreal winter and spring, the ther-

mocline is flat, and there is little or no upwelling in the

FIG. 3. (a) ACC skill between the all-months observed and forecasted DMI as a function of lead time for CMC1 (blue), MME (black),

SDM-P-P (red), SDM-F-P (green), and SDM-F-F (orange). The SDM-F-P and SDM-F-F in (a) are SDM experiments using CMC1

forecasted ENSO forcing with observed and CMC1 forecasted DMI initial conditions, respectively. (b)–(h) As in (a), but for CMC2,

CCSM4, CFSv2, GFDL, GFDL-A, GFDL-B, and NASA, respectively. The triangles denote that the ACC differences between SDMs

(SDM-F-P in green and SDM-F-F in orange) and original model (blue) are statistically significant above the 90% significance level based

on a two-sided test of the Fisher z transformation.
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eastern equatorial Indian Ocean, suggesting only a

weak or absent Bjerknes feedback during this season

(Schott et al. 2009). In contrast, the strong reversal of

monsoon winds to southeasterly during boreal summer

and fall is favorable for the Indian Ocean Bjerknes

feedback and thus favors the development of IOD

events. Furthermore, a negative thermodynamic air–

sea feedback in boreal winter arises from the interac-

tion between an anomalous atmospheric anticyclone

and a cold SST anomaly off Sumatra (Li et al. 2003). Both

SDM-F-F and SDM-P-P also exhibit the sharp drop of

ACC and NRMSE during boreal winter (Figs. 5k,l and

6k,l). This suggests the winter predictability barrier for

the IOD predictions cannot be overcome with the SDM

approach.

An interesting feature is that unlike the skill sea-

sonality in the persistence forecasts, many models’

forecasts (CCSM4, GFDL, GFDL-A, GFDL-B, NASA,

and the MME) illustrate a slight recovery of ACC and

NRMSE skill at target months in late winter/early spring

(February–April) for most lead times (Figs. 5 and 6).

However, this rebound is not evident in the CMC1 and

CMC2 models, and only weakly represented in CFSv2.

By studying the persistence of observed SEIO andWIO

SST anomalies, Ding and Li (2012) suggested that the

winter predictability barrier for SST in SEIO is more

strongly influenced by ENSO. Furthermore, this skill

rebound appears in the SDM-F-F forecasts that use

forecasted ENSO forcing and DMI initial conditions

from CMC1, CMC2, and CFSv2 models’ forecasts (see

example in Fig. 5k for CMC2). This further indicates

that a poor representation of the IOD–ENSO relation-

ship limits IOD predictability in these three models. The

superior performance of the MME is also evident for

this rebound (Figs. 5 and 6), which might be explained

by both better ENSO prediction skill (Figs. 1c,d) and a

more realistic IOD–ENSO relationship (Fig. 2).

c. Prediction skill for the IOD in peak season

Concentrating just on the SON season when the

IOD tends to peak, Fig. 7a shows the skillful DMI lead

time (defined by an ACC value of 0.6) ranging from

4.5-month lead (CMC1 and CMC2) to 6-month lead

(most of other NMMEmodels and theMME), which is

significantly improved compared to a skillful 4-month

lead reported by Shi et al. (2012) using older prediction

systems. The superior performance of the MME is ev-

ident in terms of the NRMSE metric (Fig. 7b). Such a

MME benefit was also found in other multimodel

studies for ENSO (e.g., Barnston et al. 2019) and IOD

predictions (Liu et al. 2017). If a skillful prediction is

defined as ACC above 0.5 and NRMSE less than 1, the

MME provides skillful predictions of DMI in SON at

6.5-month lead (Figs. 7a,b).

FIG. 4. As in Fig. 3, but for RMSE (K) skill.
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The SON stratified metrics for SDM-F-F forecasts are

shown in Figs. 7c and 7d. A slightly improved ACC and

considerable improved RMSE skill is seen for SDM-F-F

forecasts compared to the original forecasts from CMC1,

CMC2, CFSv2, and CCSM4 at most lead times, and for

NASA at longer lead times. Importantly, the SDM-F-F

provides a slightly better forecast than any of the origi-

nal forecasts of the NMME models. Furthermore, the

SDM-P-P forecast provide skillful IOD predictions up to

11 months ahead, which is strongly superior to theMME.

This implies there is ample scope to improve the NMME

models in terms of IOD prediction skill and that the up-

per predictability limit at longer lead times has probably

not yet been achieved because none of the NMME

models are fully capturing the observed IOD–ENSO re-

lationship (Fig. 2) and because both ENSO physics and

ENSO prediction skill could likely be further improved

upon (Kumar et al. 2017).

Figures 8a–c shows the hit rate for positive and neg-

ative IOD events in SON and the false alarm rate as a

FIG. 5. ACC between model forecasts and observations as a function of lead time and target season. Each panel highlights individual

models, the MME, persistence, SDM-F-F, and SDM-P-P. The SDM-F-F forecasts use forecasted ENSO forcing and DMI initial condi-

tions from the ensemble mean of CMC2 and CFSv2. The model names are indicated at the top right of each panel. The contour interval

is 0.1.
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function of lead time for the original forecasts of the

NMME models. The observed frequency of occurrence

of positive IOD events, negative IOD events, and neu-

tral IOD events are, respectively, 11/37 (5J/T), 10/37

(5L/T), and 16/37 (5K/T) (see Table 2 for definitions of

capital letters J–T) for the period of 1982–2018. As seen

in Figs. 8a–c, the hit rate for positive IOD events and

false alarm rate from original NMME forecasts is

larger than the observed frequency of occurrence for

IOD events and exhibit large model diversity. We find

hit rates exceeding 50% ranges from 3.5 (CFSv2 and

NASA) to 8.5 months (CMC2, GFDL-A, andGFDL-B)

and the MME in between, with false alarms exceeding

50% from 1.5 (CMC2) to 7.5 months (NASA) and the

MME in between. The hit rate for negative IOD events

exhibits relatively smaller model diversity than that for

positive IOD events, with hit rate exceeding 50% ranges

from3.5 (NASA) to 6.5months (CCSM4).Although some

model original forecasts (such as CMC2, GFDL-A, and

GFDL-B) usually correctly predict the occurrence of IOD

events when an event actually occurs, they also often

wrongly predict an eventwhen none occurs; so that there is

reduced confidence of an event occurring when one is

forecasted.Nevertheless, these rate skills from theNMME

FIG. 6. As in Fig. 5, but for the normalized root-mean-square error (NRMSE).
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original forecasts are higher than those fromolder prediction

systems reported by Shi et al. (2012), indicating a marked

improvement is clearly achieved through NMME systems.

The hit rate and the false alarm rate for the SDM-F-F

forecasts are shown in Figs. 8d–f. We see reduced false

alarm rates at longer lead times for all SDM-F-F fore-

casts compared with their corresponding original fore-

casts although the hit rate for negative IOD events is

slightly decreased. The SDM-P-P forecasts at longer

lead times are the best performers in terms of false alarm

rate. Another interesting aspect shown in Fig. 8 is that the

SDM-P-P forecasts exhibit asymmetric characteristics with

hit rates for positive IOD events being in the middle-

ranked groupwhile for negative IODevents hit rates being

theworst performers.Wehypothesize that this asymmetric

characteristic is related to the asymmetry of ENSO since

the linear SDM transfers the asymmetry of the ENSO

forcing to the IOD directly. Any potential asymmetry in

the statistical ENSO–IOD relationship is not included in

the current SDM.

d. Individual IOD events

Figure 9 shows the DMI time series comparing the

forecasts from individual models and the MME with

FIG. 7. (a) ACC and (b) RMSE (K) skill between the observed and forecasted DMI at target season SON, as a

function of lead time for the individualmodels. (c),(d)As in (a) and (b), but for SDM-F-F forecasts using forecasted

ENSO forcing and DMI initial conditions from NMMEmodels andMME. The metrics for SDM-P-P forecasts are

also indicated.
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observations throughout the 1982–2019 period. The

DMI time series for SDM-F-F and SDM-P-P forecasts

are shown in Fig. 10. The forecasts shown at 0.5-, 2.5-,

4.5-, 6.5-, and 8.5-month lead times are generally

matching the major patterns seen in the observations

successfully, but their agreement weakens as expected

with increasing lead times.

There is a large event-by-event forecast skill diversity

evident for the IOD predictions among the NMME

models (Fig. 9). This diversity arises from different

contributions of ocean–atmosphere coupled processes

that contribute to the development of the Indian Ocean

dipole (Tanizaki et al. 2017). The strong positive IOD

events of 1997 and 2015, which co-occurred with the

super El Niño events of 1997/98 and 2015/16 in the

Pacific (see observed N3.4 anomalies in Fig. 11), re-

spectively, were well predicted by most of individual

models and by the MME even at lead times longer than

two seasons, in terms of magnitude, development phase

timing, and decay phase timing. Skillful predictions up

two seasons in advance bymost of individual models and

by the MME hold also true for the 1998 and 2010 neg-

ative IOD events, which co-occurred with strong La

Niña events (Fig. 11). Consistent with Zhao et al. (2019),

CFSv2 failed to predict the occurrence of the 2015 IOD

event one season ahead while the SDM successfully

predict the event two seasons in advance.

The 2010 negative IOD event was well predicted

in CCSM4, CFSv2, GFDL, GFDL-A, and GFDL-B

models two seasons ahead, but was not successfully

predicted by CMC1, CMC2, NASA, and the MME

(Fig. 9). In contrast, Fig. 10 shows that the 2010 event

was successfully predicted two seasons ahead by the

SDM-F-F with forecasted ENSO forcing from CMC1

FIG. 8. Hit rate for NMME original forecasts of (a) positive IOD events, (b) negative IOD events, and (c) false alarm rate for both

positive and negative events in SON that exceed 0.5 observed standard deviation (0.3K). Abscissa is lead time in months and ordinate is

the percentage.Dashed gray lines in (a)–(c) are observed frequency of occurrence of positive, negative, and neutral events, respectively. A

1–2–1 filter across lead time was applied to the hit rate and false alarm rate prior to plotting. (d)–(f) As in (a)–(c), respectively, but for the

SDM-F-F forecasts that use forecasted ENSO forcing and DMI initial conditions from NMME models and MME.
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FIG. 9. Time series of running 3-month mean DMI SST anomaly observations and corresponding model forecasts (individual models

andMME) for the same period from start times at 0.5-, 2.5-, 4.5-, 6.5-, and 8.5-month leads. The bottom row shows the observations, while

the nine rows above show the forecasts at the five increasing lead times (months). Gray color indicates not available data (depending on

model and lead time).
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FIG. 10. As in Fig. 9, but for the SDM-F-F forecasts using forecasted ENSO forcing and DMI initial conditions from each individual

model and the SDM-P-P forecasts using observed ENSO forcing and DMI initial conditions. The gray color indicates not available data

(depending on model and lead time).
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and CMC2, but was not successfully predicted two

seasons ahead by the SDM-F-F with forecasted ENSO

forcing fromCCSM4,CFSv2,GFDL,GFDL-A,GFDL-B,

and NASA due to the strong warm biases in the

forecasted ENSO conditions at lead times of up to two

seasons in these models (Fig. 11). Importantly, the

2010 event was well predicted in the SDM-P-P two

seasons ahead, suggesting the dominate role of ENSO

forcing in this event. It also suggests that the suc-

cessful prediction of the 2010 IOD event in the orig-

inal CCSM4, CFSv2, GFDL, GFDL-A, and GFDL-B

forecasts are potentially due to error compensation

between ENSO forcing and Indian Ocean intrinsic

processes.

The strongest negative IOD event co-occurred in 2016

with a weak La Niña condition. Figure 10 shows that

SDM-P-P failed to predict the development phase of the

2016 IOD event during June–August at a lead time of

2.5 months. The mature phase of the 2016 IOD event

was well predicted 4.5months ahead by SDM-P-P but up

two seasons ahead by SDM-F-F forecasts using forcings

from CMC1, GFDL, GFDL-A, GFDL-B, and NASA.

The better performance of the SDM-F-F at longer lead

times may be related to the cold biases of predicted

N3.4, that is, the NMME models predicted stronger La

Niña conditions than what actually occurred (Fig. 11).

This supports the finding by Lim and Hendon (2017) that

Indian Ocean surface and subsurface conditions may

have played a dominant role in the 2016 negative IOD

event based on an analysis of forecast sensitivity experi-

ments using the Australian Bureau of Meteorology’s

dynamical seasonal forecast system. Lu et al. (2018b) also

demonstrated that skillful predictions of the 2016 IOD

event in two operational models was due to realistic

representations of observed air–sea interactions and the

precursor signal of early subsurface warming in the

eastern Indian Ocean.

The 1994 and 2006 positive IOD conditions are two

important examples of events that occurred during a

neutral ENSO phase. The amplitudes and impacts of

these events are comparable to the strongest 1997 IOD

that co-occurred with El Niño conditions in the Pacific

(Guan andYamagata 2003; Luo et al. 2008). None of the

original NMME model forecasts (including the MME)

are able to predict the development phase of the 1994

IOD event during April–June (2 months in advance).

Since there are only seasonally modulated damping

processes controlling the evolution of the DMI in the

SDM during ENSO neutral conditions, it is expected

that the SDM forecasts fail to predict the development

phase of ENSO-independent IOD events. Once the IOD

starts gaining amplitude in JJA 1994, both the NMME

models and the SDMcan predict the event occurrence and

decay phase timing during October–December (OND)

one season ahead (Figs. 9 and 10). This highlights that the

development phase timing of ENSO-independent IOD

events is very challenging to predict.

In contrast, the ENSO-independent 2006 positive IOD

event was well predicted two seasons ahead by some of the

NMME models (GFDL-A, GFDL-B, and CCSM4) in

terms of magnitude, development phase timing, and decay

phase timing. The ENSO-independent 2012 positive IOD

event was predicted best by the GFDL, GFDL-A, and

GFDL-B models. This suggests that the GFDL-A and

GFDL-B models exhibit superior performance in pre-

dicting IOD event during a neutral ENSO state com-

pared to the other NMME models. These events may

serve as important examples that might help identify

potential root causes of the low predictability in some

models and higher predictability in others, thereby

contributing to potential future skill improvement of

ENSO-independent IOD event predictions.

A main reason for the limited IOD predictive skill in

the NMME models is the considerable false alarm rate

of negative/positive IOD events during neutral IOD

phases (Fig. 9). Some false alarms occur ubiquitously

amongmost of NMMEmodels at longer lead times, such

as the negative IOD events predicted for 1983, 1988, and

1999 that did not occur in reality. The same holds true

for the predicted 1993 positive IOD event that did not

occur. Some other false alarms are more model depen-

dent. For instance, the false alarm of a predicted 2014

positive IOD event in GFDL, GFDL-A, and GFDL-B

did not occur in other models, and was thus only weakly

represented in theMME. The false alarm of the predicted

2000 negative IOD event at longer lead times in CMC1,

CMC2, CCSM4, and NASA did not occur in CFSv2,

GFDL, GFDL-A, and GFDL-B, and was also only

weakly represented in the MME. Additionally, the ob-

served 2017 positive IOD event reached its mature phase

fromMay to July. However, its mature phase was wrongly

predicted to occur between August and November by

most of the NMME models and the MME.

The improvement of the SDM in predicting IOD

events compared to the original NMMEmodel forecasts

is shown by the fewer amount of false alarms in the

SDM (Fig. 10). Some false alarms (such as 1983, 1993,

2001, and 2009) in the original NMME model forecasts

at longer lead times (Fig. 9) are not evident in the

SDM-P-P forecast. Also they are not evident or only

weakly represented in the SDM-F-F predictions that

use forecasted ENSO forcing from the corresponding

NMMEmodel (Fig. 10). For example, the false alarm of

the predicted 1983 negative IOD event disappears in

the SDM-F-F forecasts for CMC2, CCSM4, and CFSv2.

In addition, it is only weakly represented in the SDM-F-F
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FIG. 11. Time series of running 3-month mean Niño-3.4 SST anomaly observations and biases of corresponding model forecasts (in-

dividual models and MME) for the same period from start times at 0.5-, 2.5-, 4.5-, 6.5-, and 8.5-month leads. The bottom row shows the

observations, while the nine rows above show the biases at the five increasing lead times (months). The gray color indicates not available

data (depending on model and lead time).
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forecasts for CMC1, GFDL, GFDL-A, and GFDL-B

(Fig. 10), which show considerable cold biases of the

predicted N3.4 (Fig. 11). For another example, the

false alarm of the predicted 2001 positive IOD event

in the original forecasts weakens in the corresponding

SDM-F-F predictions of CFSv2, GFDL-A, and GFDL-B

(comparing Figs. 9 and 10), in which there are consider-

able warm biases of the predicted N3.4 (Fig. 11). These

results suggest that cold and warm biases of the predicted

N3.4 may cause false alarms of negative and positive

IOD events, respectively, in the coupled models.

Recently, Tompkins et al. (2017) demonstrated that the

‘‘overconfidence problem’’ in ENSO prediction is a com-

mon deficiency in most dynamical seasonal prediction

systems including theNMMEmodels. Therefore, reducing

the false alarm rate in ENSO prediction should also lead

to a reduction of the false alarm rate in IOD prediction.

5. Conclusions and discussion

In this study, predictability of the IOD (measured by

the DMI) was studied by analyzing the hindcasts and

real-time forecasts from eight NMMEmodels with the

help of a simple recently developed SDM (Stuecker

et al. 2017; Zhao et al. 2019). As for the overall IOD

predictive skill in original forecasts from NMME

models, the MME forecast is found to be superior to

the forecast of each individual model at short lead

times (1.5–4.5 months). The three best performing in-

dividual models are CCSM4, GFDL-A, and GFDL-B

(Fig. 1). If an ACC value of 0.5 is used as a standard of

skillful predictions, we find that the MME IOD forecast

is skillful up to about 4–5-month lead time, which is

much longer than the skillful lead time of 2–3 months

seen in ENSEMBLES (Liu et al. 2017). This indicates a

gradual improvement of IOD predictions in current

seasonal forecast systems.

Although CFSv2 and CMC2 are top-rankedmodels in

predicting ENSO, they exhibit poor predictive skill for

the IOD in terms of both ACC and RMSE (Fig. 1). The

poor IOD prediction skills seen in CFSv2, CMC2, as

well as CMC1, are likely related to a poor representation

of the observed statistical and physical IOD–ENSO re-

lationship in these models (Fig. 2). This attribution

statement is further supported by significantly improved

skills of SDM-F-F DMI forecasts that use forecasted

ENSO forcing from these three models, in which the

observed IOD–ENSO relationship is well reproduced

(Figs. 3 and 4). In general, the skills for SDM-F-F DMI

forecasts that use forecasted ENSO forcing from other

NMME models were better than those for the NMME

original DMI forecasts. Importantly, the SDM-P-P DMI

forecasts demonstrate superior performance of IOD

predictions than theMMEat lead-times of 4.5–9.5months

in terms of both ACC and RMSE skill scores (Figs. 3

and 4), shedding light on the potential room for im-

provement of IOD prediction skill by improving ENSO

predictions.

An analysis on the effects of seasonality verifies the

existence of the winter predictability barrier for the IOD

predictions inNMMEmodels. This is consistent with the

low predictability limit of monthly SSTs over south-

eastern tropical Indian Ocean discussed by Li and Ding

(2013). Comparing SDM-F-F and SDM-P-P forecasts

confirms that the winter predictability barrier may not

be overcome using the SDM approach. Most of models

and the MME exhibit a slight recovery of ACC and

NRMSE skills at target months in late boreal winter and

early spring. This skill rebound does not exist in the

original IOD forecasts from CMC1, CMC2, and CFSv2,

but is seen in the corresponding SDM-F-F forecasts for

these three models, suggesting that the winter predict-

ability barrier for IOD predictions is strongly influenced

by ENSO, consistent with Ding and Li (2012).

There is large event-by-event skill diversity for the

IOD predictions among NMME models. The superior

performance of the SDM is evident for most of the IOD

events, especially IOD events that co-occurred with

strong El Niño/La Niña events. Moreover, many false

alarms at longer lead times in the original forecasts of

NMME models and the MME forecast are much re-

duced in the SDM-F-F forecasts for the correspond-

ing individual model. Our results also suggest that

cold/warm biases of the predicted N3.4 may cause

false alarms of negative/positive IOD events in the

coupled models.

Our results have important implications for future

model development. The physical basis for the IOD–

ENSO relationship in the SDM is that the anomalous

surface wind stress and heat fluxes induced by the

seasonally modulated atmospheric ENSO (C-mode)

circulation in the Indian Ocean are represented by

the right-hand side ENSO forcing term in Eq. (1).

Therefore, we suspect that the biases in the IOD–

ENSO relationship in some CGCMs mostly arise from

biases in the ENSO atmospheric teleconnection to the

Indian Ocean, involving processes (and parameteri-

zations in coupled models) of convection, clouds, and

radiation. However, here we did not eliminate other

potential predictability sources that might arise from

Indian Ocean intrinsic dynamics via recharge oscilla-

tor dynamics (Feng and Meyers 2003; McPhaden and

Nagura 2014; Wang et al. 2016; Lim and Hendon 2017;

Lu et al. 2018b). Additionally, previous studies re-

ported that the ENSO–IOD relationship varies de-

pending on different ENSO types (Zhang et al. 2015;
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Fan et al. 2017). Our SDM could potentially be further

improved in the future by including Indian Ocean

subsurface heat content as an additional resolved process

and by considering different ENSO flavors.
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